Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
J Med Virol ; 95(6): e28846, 2023 06.
Article in English | MEDLINE | ID: covidwho-20245127

ABSTRACT

Since the first SARS-CoV-2 outbreak in late 2019, the SARS-CoV-2 genome has harbored multiple mutations, especially spike protein mutations. The currently fast-spreading Omicron variant that manifests without symptoms or with upper respiratory diseases has been recognized as a serious global public health problem. However, its pathological mechanism is largely unknown. In this work, rhesus macaques, hamsters, and BALB/C mice were employed as animal models to explore the pathogenesis of Omicron (B.1.1.529). Notably, Omicron (B.1.1.529) infected the nasal turbinates, tracheae, bronchi, and lungs of hamsters and BALB/C mice with higher viral loads than in those of rhesus macaques. Severe histopathological damage and inflammatory responses were observed in the lungs of Omicron (B.1.1.529)-infected animals. In addition, viral replication was found in multiple extrapulmonary organs. Results indicated that hamsters and BALB/c mice are potential animal models for studies on the development of drugs/vaccines and therapies for Omicron (B.1.1.529).


Subject(s)
COVID-19 , SARS-CoV-2 , Mice , Animals , Cricetinae , Macaca mulatta , Mice, Inbred BALB C , Bronchi
2.
Int J Mol Sci ; 24(9)2023 Apr 28.
Article in English | MEDLINE | ID: covidwho-2313603

ABSTRACT

Patients who have recovered from coronavirus disease 2019 (COVID-19) infection may experience chronic fatigue when exercising, despite no obvious heart or lung abnormalities. The present lack of effective treatments makes managing long COVID a major challenge. One of the underlying mechanisms of long COVID may be mitochondrial dysfunction. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections can alter the mitochondria responsible for energy production in cells. This alteration leads to mitochondrial dysfunction which, in turn, increases oxidative stress. Ultimately, this results in a loss of mitochondrial integrity and cell death. Moreover, viral proteins can bind to mitochondrial complexes, disrupting mitochondrial function and causing the immune cells to over-react. This over-reaction leads to inflammation and potentially long COVID symptoms. It is important to note that the roles of mitochondrial damage and inflammatory responses caused by SARS-CoV-2 in the development of long COVID are still being elucidated. Targeting mitochondrial function may provide promising new clinical approaches for long-COVID patients; however, further studies are needed to evaluate the safety and efficacy of such approaches.


Subject(s)
COVID-19 , Mitochondrial Diseases , Humans , SARS-CoV-2 , Post-Acute COVID-19 Syndrome , Inflammation
3.
Front Immunol ; 13: 986589, 2022.
Article in English | MEDLINE | ID: covidwho-2305624

ABSTRACT

When the external conditions change, such as the temperature or the pressure, the multi-component system sometimes separates into several phases with different components and structures, which is called phase separation. Increasing studies have shown that cells condense related biomolecules into independent compartments in order to carry out orderly and efficient biological reactions with the help of phase separation. Biomolecular condensates formed by phase separation play a significant role in a variety of cellular processes, including the control of signal transduction, the regulation of gene expression, and the stress response. In recent years, many phase separation events have been discovered in the immune response process. In this review, we provided a comprehensive and detailed overview of the role and mechanism of phase separation in the innate and adaptive immune responses, which will help the readers to appreciate the advance and importance of this field.


Subject(s)
Biomolecular Condensates , Immune System , Temperature
4.
J Biochem ; 171(4): 367-377, 2022 Mar 31.
Article in English | MEDLINE | ID: covidwho-2288636

ABSTRACT

Glutathione (GSH) is the most abundant non-protein thiol (-SH) in mammalian cells. Its synthesis and metabolism serve to maintain cellular reduction-oxidation (redox) homeostasis, which is important for multiple cellular processes including proliferation, differentiation and death. An accumulating body of evidence suggests that the essential roles of GSH extended far beyond its oxidant and electrophile scavenger activities and regulatory role in the lifespan of cells. Recent findings revealed that altered GSH levels are closely associated with a wide range of pathologies including bacterial and viral infections, neurodegenerative diseases and autoimmune disorders, all of which are also characterized by aberrant activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome. As a result of these findings, GSH was assigned a central role in influencing the activation of the NLRP3 inflammasome. To expand on our recent advances in understanding this process, we discuss here the emerging roles of GSH in activation of the NLRP3 inflammasome, and the therapeutic potential of GSH in its associated pathologies.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Glutathione/metabolism , Inflammasomes/metabolism , Mammals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Oxidation-Reduction
5.
Inflammation ; 2022 Sep 14.
Article in English | MEDLINE | ID: covidwho-2287565

ABSTRACT

A cytokine storm (CS) is an out-of-control inflammatory response closely associated with the progression of diseases, such as multiple organ failure (MOF), severe sepsis, and severe or critical COVID-19. However, there is currently a lack of reliable diagnostic markers to distinguish CS from normal inflammatory responses. Tumor necrosis factor-α (TNF-α) includes transmembrane TNF-α (tmTNF-α) and secreted TNF-α (sTNF-α). The MOF mouse model in this study showed that the tmTNF-α expression changes in the neutrophils differed from the serum TNF-α and serum IL-18, INF-γ, IL-4, and IL-6. Furthermore, tmTNF-α, instead of serum TNF-α, IL-18, INF-γ, IL-4, and IL-6, reflected liver and kidney tissue damage and increased with the aggravation of these injuries. Analysis of the ROC results showed that tmTNF-α effectively distinguished between inflammatory responses and CS and efficiently differentiated between surviving and dead mice. It also significantly improved the diagnostic value of the traditional CRP marker for CS. These results indicated that the tmTNF-α expressed in the neutrophils could be used to diagnose CS in MOF mice, providing an experimental basis to further develop tmTNF-α for diagnosing CS patients.

6.
J Med Virol ; 2022 Sep 19.
Article in English | MEDLINE | ID: covidwho-2236120

ABSTRACT

Messenger RNA (mRNA) vaccines are promising alternatives to conventional vaccines in many aspects. We previously developed a lipopolyplex (LPP)-based mRNA vaccine (SW0123) that demonstrated robust immunogenicity and strong protective capacity against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection in mice and rhesus macaques. However, the immune profiles and mechanisms of pulmonary protection induced by SW0123 remain unclear. Through high-resolution single-cell analysis, we found that SW0123 vaccination effectively suppressed SARS-CoV-2-induced inflammatory responses by inhibiting the recruitment of proinflammatory macrophages and increasing the frequency of polymorphonuclear myeloid-derived suppressor cells. In addition, the apoptotic process in both lung epithelial and endothelial cells was significantly inhibited, which was proposed to be one major mechanism contributing to vaccine-induced lung protection. Cell-cell interaction in the lung compartment was also altered by vaccination. These data collectively unravel the mechanisms by which the SW0123 protects against lung damage caused by SARS-CoV-2 infection.

7.
Clin Rev Allergy Immunol ; 2022 Jan 18.
Article in English | MEDLINE | ID: covidwho-2234634

ABSTRACT

Abnormal immunological indicators associated with disease severity and mortality in patients with COVID-19 have been reported in several observational studies. However, there are marked heterogeneities in patient characteristics and research methodologies in these studies. We aimed to provide an updated synthesis of the association between immune-related indicators and COVID-19 prognosis. We conducted an electronic search of PubMed, Scopus, Ovid, Willey, Web of Science, Cochrane library, and CNKI for studies reporting immunological and/or immune-related parameters, including hematological, inflammatory, coagulation, and biochemical variables, tested on hospital admission of COVID-19 patients with different severities and outcomes. A total of 145 studies were included in the current meta-analysis, with 26 immunological, 11 hematological, 5 inflammatory, 4 coagulation, and 10 biochemical variables reported. Of them, levels of cytokines, including IL-1ß, IL-1Ra, IL-2R, IL-4, IL-6, IL-8, IL-10, IL-18, TNF-α, IFN-γ, IgA, IgG, and CD4+ T/CD8+ T cell ratio, WBC, neutrophil, platelet, ESR, CRP, ferritin, SAA, D-dimer, FIB, and LDH were significantly increased in severely ill patients or non-survivors. Moreover, non-severely ill patients or survivors presented significantly higher counts of lymphocytes, monocytes, lymphocyte/monocyte ratio, eosinophils, CD3+ T,CD4+T and CD8+T cells, B cells, and NK cells. The currently updated meta-analysis primarily identified a hypercytokinemia profile with the severity and mortality of COVID-19 containing IL-1ß, IL-1Ra, IL-2R, IL-4, IL-6, IL-8, IL-10, IL-18, TNF-α, and IFN-γ. Impaired innate and adaptive immune responses, reflected by decreased eosinophils, lymphocytes, monocytes, B cells, NK cells, T cells, and their subtype CD4+ and CD8+ T cells, and augmented inflammation, coagulation dysfunction, and nonpulmonary organ injury, were marked features of patients with poor prognosis. Therefore, parameters of immune response dysfunction combined with inflammatory, coagulated, or nonpulmonary organ injury indicators may be more sensitive to predict severe patients and those non-survivors.

8.
Pathogens ; 11(11)2022 Oct 29.
Article in English | MEDLINE | ID: covidwho-2123781

ABSTRACT

SARS-CoV-2 is a new coronavirus that has affected the world since 2019. Interstitial pneumonia is the most common clinical presentation, but additional symptoms have been reported, including neurological manifestations. Severe forms of infection, especially in elderly patients, present as an excessive inflammatory response called "cytokine storm", which can lead to acute respiratory distress syndrome (ARDS), multiorgan failure and death. Little is known about the relationship between symptoms and clinical outcomes or the characteristics of virus-host interactions. The aim of this narrative review is to highlight possible links between neurological involvement and respiratory damage mediated by pathological inflammatory pathways in SARS-CoV-2 infection. We will focus on neuro-immune interactions and age-related immunity decline and discuss some pathological mechanisms that contribute to negative outcomes in COVID-19 patients. Furthermore, we will describe available therapeutic strategies and their effects on COVID-19 neurological symptoms.

9.
Front Med (Lausanne) ; 9: 951115, 2022.
Article in English | MEDLINE | ID: covidwho-1987510

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by coronavirus-2 (SARS-CoV-2) infection has rapidly spread throughout the world and become a major threat to human beings. Cytokine storm is a major cause of death in severe patients. Abatacept can suppress cytokines used as antirheumatic drugs in clinical applications. This study analyzed the molecular mechanisms of abatacept treatment for COVID-19. Differentially expressed genes (DEGs) were identified by analyzing expression profiling of abatacept treatment for rheumatoid arthritis (RA) patients and SARS-CoV-2 infection patients. We found that 59 DEGs were upregulated in COVID-19 patients and downregulated following abatacept treatment. Gene set enrichment analysis (GSEA) and Gene Ontology (GO) analysis showed that immune and inflammatory responses were potential regulatory mechanisms. Moreover, we verified 8 targeting genes and identified 15 potential drug candidates for the treatment of COVID-19. Our study illustrated that abatacept could be a promising property for preventing severe COVID-19, and we predicted alternative potential drugs for the treatment of SARS-CoV-2 infection.

10.
J Thorac Dis ; 14(2): 355-370, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1737501

ABSTRACT

Background: The current COVID-19 pandemic is posing a major challenge to public health on a global scale. While it is generally believed that severe COVID-19 results from over-expression of inflammatory mediators (i.e., a "cytokine storm"), it is still unclear whether and how co-infecting pathogens contribute to disease pathogenesis. To address this, we followed the entire course of the disease in cases with severe or critical COVID-19 to determine the presence and abundance of all potential pathogens present-the total "infectome"-and how they interact with the host immune system in the context of severe COVID-19. Methods: We examined one severe and three critical cases of COVID-19, as well as a set of healthy controls, with longitudinal samples (throat swab, whole blood, and serum) collected from each case. Total RNA sequencing (meta-transcriptomics) was performed to simultaneously investigate pathogen diversity and abundance, as well as host immune responses, in each sample. A Bio-Plex method was used to measure serum cytokine and chemokine levels. Results: Eight pathogens, SARS-CoV-2, Aspergillus fumigatus (A. fumigatus), Mycoplasma orale (M. orale), Myroides odoratus (M. odoratus), Acinetobacter baumannii (A. baumannii), Candida tropicalis, herpes simplex virus (HSV) and human cytomegalovirus (CMV), identified in patients with COVID-19 appeared at different stages of the disease. The dynamics of inflammatory mediators in serum and the respiratory tract were more strongly associated with the dynamics of the infectome compared with SARS-CoV-2 alone. Correlation analysis revealed that pulmonary injury was directly associated with cytokine levels, which in turn were associated with the proliferation of SARS-CoV-2 and co-infecting pathogens. Conclusions: For each patient, the cytokine storm that resulted in acute lung injury and death involved a dynamic and highly complex infectome, of which SARS-CoV-2 was a component. These results indicate the need for a precision medicine approach to investigate both the infection and host response as a standard means of infectious disease characterization.

11.
Mol Cell Biochem ; 477(3): 711-726, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1616202

ABSTRACT

The novel coronavirus pandemic has emerged as one of the significant medical-health challenges of the current century. The World Health Organization has named this new virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the first detection of SARS-CoV-2 in November 2019 in Wuhan, China, physicians, researchers, and others have made it their top priority to find drugs and cures that can effectively treat patients and reduce mortality rates. The symptoms of Coronavirus Disease 2019 (COVID-19) include fever, dry cough, body aches, and anosmia. Various therapeutic compounds have been investigated and applied to mitigate the symptoms in COVID-19 patients and cure the disease. Degenerative virus analyses of the infection incidence and COVID-19 have demonstrated that SARS-CoV-2 penetrates the pulmonary alveoli's endothelial cells through Angiotensin-Converting Enzyme 2 (ACE2) receptors on the membrane, stimulates various signaling pathways and causes excessive secretion of cytokines. The continuous triggering of the innate and acquired immune system, as well as the overproduction of pro-inflammatory factors, cause a severe condition in the COVID-19 patients, which is called "cytokine storm". It can lead to acute respiratory distress syndrome (ARDS) in critical patients. Severe and critical COVID-19 cases demand oxygen therapy and mechanical ventilator support. Various drugs, including immunomodulatory and immunosuppressive agents (e.g., monoclonal antibodies (mAbs) and interleukin antagonists) have been utilized in clinical trials. However, the studies and clinical trials have documented diverging findings, which seem to be due to the differences in these drugs' possible mechanisms of action. These drugs' mechanism of action generally includes suppressing or modulating the immune system, preventing the development of cytokine storm via various signaling pathways, and enhancing the blood vessels' diameter in the lungs. In this review article, multiple medications from different drug families are discussed, and their possible mechanisms of action are also described.


Subject(s)
Antiviral Agents/immunology , COVID-19 Drug Treatment , Immunomodulating Agents/pharmacology , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Monoclonal, Humanized/pharmacology , Antiviral Agents/pharmacology , Azetidines/immunology , Azetidines/pharmacology , COVID-19/etiology , Dexamethasone/immunology , Dexamethasone/pharmacology , Famotidine/immunology , Famotidine/pharmacology , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/immunology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Infliximab/immunology , Infliximab/pharmacology , Interleukin 1 Receptor Antagonist Protein/immunology , Interleukin 1 Receptor Antagonist Protein/pharmacology , Melatonin/immunology , Melatonin/pharmacology , Purines/immunology , Purines/pharmacology , Pyrazoles/immunology , Pyrazoles/pharmacology , Sulfonamides/immunology , Sulfonamides/pharmacology
12.
Infect Drug Resist ; 14: 2269-2277, 2021.
Article in English | MEDLINE | ID: covidwho-1282356

ABSTRACT

INTRODUCTION: The novel coronavirus (COVID-19) has become a global pandemic with sharp rises in the number of confirmed cases and rapid spread across the world. Here, we looked at the effects of geographic differences on clinical manifestations of SARS-CoV-2 infected patients. METHODS: A total of 114 confirmed COVID-19 patients were included in this study. The epidemiological, demographic, clinical, as well as laboratory findings were extracted from the electronic medical records of these patients. RESULTS: We report the observation that patients from overseas residents diagnosed with COVID-19 were mildly symptomatic with cough and presented with lower inflammatory response and attenuated virus clearance rate, as well as correspondingly prolonged days of hospital stay than local Chinese patients. Moreover, the receiver-operating characteristic (ROC) analysis, performed to provide a measure of the difference between two groups, showed that serum albumin had the highest area under the curve value (0.81, p < 0.001). DISCUSSION: Our results suggested that blood albumin level acted as a predictive value in distinguishing clinical features between local and overseas Chinese. This work underscores the need to identify distinguishably prognostic factors of geographical dissimilarity in COVID-19 patients.

13.
Front Nutr ; 7: 570235, 2020.
Article in English | MEDLINE | ID: covidwho-1058438

ABSTRACT

Fasting is one of the religious rituals of Muslims worldwide who refrain from eating foods and liquids every year during Ramadan. This year (2020), Ramadan is very different from previous years due to the outbreak of a terrible microscopic giant called coronavirus disease 2019 (COVID-19). The pandemic COVID-19 has made Ramadan very important this year because the virus has infected millions of people around the world and killed thousands, especially people with immunodeficiency. In dealing with COVID-19, maintaining good hygiene and supporting the immune system are effective, preventive approaches. Moderate exercise training and proper nutrition are the most important factors to support immune function. Lack of facilities, poor health and many traditions that lead to public community gatherings have made many Islamic countries susceptible to this dangerous virus. In such an unprecedented situation, there are many Muslims who doubt whether they can fast or not. Therefore, the proposal of usable exercise programs and effective nutritional strategies is imperative. In this study, we will look at the proposed health effects of fasting and its impact on the immune system, the effects of Ramadan intermittent fasting on resting values and responses of immunological/antioxidant biomarkers in elite and recreational athletes, together with the important health, nutrition, and exercise advice that fasting people need to follow in the event of a COVID-19 outbreak.

14.
Gastroenterol Hepatol Bed Bench ; 13(4): 388-392, 2020.
Article in English | MEDLINE | ID: covidwho-1008444

ABSTRACT

AIM: Evaluating the expression level of CD4+ FoxP3+ CD25+ T cells and IL-6 in peripheral blood samples of hospitalized COVID-19 patients. BACKGROUND: COVID-19 is an emerging disease with worldwide distribution. However, there is a little data about the correlation between the disease and the host immune responses. METHODS: Whole blood samples of 30 COVID-19 patients and eight healthy people were collected during March to June 2020. Total RNA was extracted from the samples, cDNA synthesis was performed, and the expression level of targeted genes was evaluated using quantitative real-time PCR. RESULTS: The expression level of CD4, CD25, and Foxp3 was significantly downregulated 5-, 2-, and 3-fold, respectively, among COVID-19 patients in comparison to healthy controls (P-value < 0.0001). The expression level of IL-6 represented almost 18-fold increase in COVID-19 patients compared to healthy controls. CONCLUSION: Our findings indicated the expression profile analysis of CD4+ FoxP3+ CD25+ T cells could be a potential marker for the assessment of severity of COVID-19 patients.

15.
Mol Divers ; 26(1): 629-645, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1008101

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 is responsible for the global health emergency. Here, we explore the diverse mechanisms of SARS-CoV-induced inflammation. We presume that SARS-CoV-2 likely contributes analogous inflammatory responses. Possible therapeutic mechanisms for reducing SARS-CoV-2-mediated inflammatory responses comprise FcR inactivation. Currently, there is no specific remedy available against the SARS-CoV-2. Consequently, recognizing efficacious antiviral leads to combat the virus is crucially desired. The coronavirus (CoV) main protease (Mpro also called 3CLpro), which plays an indispensable role in viral replication and transcription, is an interesting target for drug design. This review compiles the latest advances in biological and structural research, along with development of inhibitors targeting CoV Mpros. It is anticipated that inhibitors targeting CoV Mpros could be advanced into wide-spectrum antiviral drugs in case of COVID-19 and other CoV-related diseases. The crystal structural and docking results have shown that Ebselen, N3, TDZD-8 and α-ketoamide (13b) inhibitors can bind to the substrate-binding pocket of COVID-19 Mpro. α-ketoamide-based inhibitor 13b inhibits the replication of SARS-CoV-2 in human Calu3 lung cells. Quantitative real-time RT-PCR (qRT-PCR) showed that the treatment with Ebselen, TDZD-8 and N3 reduced the amounts of SARS-CoV-2, respectively, 20.3-, 10.19- and 8.4-fold compared to the treatment in the absence of inhibitor. Moreover, repurposing of already present drugs to treat COVID-19 serves as one of the competent and economic therapeutic strategies. Several anti-malarial, anti-HIV and anti-inflammatory drugs as mentioned in Table 2 were found effective for the COVID-19 treatment. Further, hydroxychloroquine (HCQ) was found more potent than chloroquine (CQ) in inhibiting SARS-CoV-2 in vitro. Furthermore, convalescent plasma from patients who have recuperated from viral infections can be employed as a therapy without the appearance of severe adverse events. Hence, it might be valuable to examine the safety and efficacy of convalescent plasma transfusion in SARS-CoV-2-infected patients.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Antiviral Agents/chemistry , Blood Component Transfusion , COVID-19/therapy , Drug Design , Drug Repositioning , Humans , Immunization, Passive , Molecular Docking Simulation , Pandemics , Plasma/metabolism , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , SARS-CoV-2 , COVID-19 Serotherapy
16.
Trials ; 21(1): 882, 2020 Oct 26.
Article in English | MEDLINE | ID: covidwho-892369

ABSTRACT

OBJECTIVES: We will evaluate the efficacy and safety of Melatonin, compared to the standard therapeutic regimen on clinical symptoms and serum inflammatory parameters in patients with confirmed COVID-19, who are moderately ill. TRIAL DESIGN: This is a single-center, randomized, double-blind, placebo-controlled clinical trial with a parallel-group design conducted at Shahid Mohammadi Hospital, Bandar Abbas, Iran. PARTICIPANTS: All patients admitted to Severe Acute Respiratory Syndrome Departments of Shahid Mohammadi Hospital, Bandar Abbas, Iran will be screened for the following criteria. INCLUSION CRITERIA: 1. Age ≥20 years 2. Confirmed SARS-CoV-2 diagnosis (positive polymerase chain reaction). 3. Moderate COVID-19 pneumonia (via computed tomography and or X-ray imaging), requiring hospitalization. 4. Hospitalized ≤48 hours. 5. Signing informed consent and willingness of the participant to accept randomization to any assigned treatment arm. EXCLUSION CRITERIA: 1. Underlying diseases, including chronic hypertension, diabetes mellitus, seizure, depression, chronic hepatitis, cirrhosis, and cholestatic liver diseases. 2. Severe and critical COVID-19 pneumonia. 3. Use of warfarin, corticosteroids, hormonal drugs, alcohol, other antiviral and investigational medicines, and illegal drugs (during the last 30 days). 4. History of known allergy to Melatonin. 5. Pregnancy and breastfeeding. INTERVENTION AND COMPARATOR: Intervention group: The standard treatment regimen for COVID-19, according to the Iranian Ministry of Health and Medical Education's protocol, along with Melatonin capsules at a dose of 50 mg daily for a period of seven days. CONTROL GROUP: The standard therapeutic regimen for COVID-19 along with Melatonin-like placebo capsules at a dose of one capsule daily for a period of seven days. Both Melatonin and placebo capsules were prepared at the Faculty of Pharmacy and Pharmaceutical Sciences, Hormozgan University of Medical Sciences, Bandar Abbas, Iran. MAIN OUTCOMES: The primary outcomes are the recovery rate of clinical symptoms and oxygen saturation as well as improvement of serum inflammatory parameters, including C-reactive protein, tumor necrosis factor-alpha (TNF-ɑ), interleukin-1ß (IL-1ß), and IL-6 within seven days of randomization. The secondary outcomes are the time to improve clinical and paraclinical features along with the incidence of serious adverse drug reactions within seven days of randomization. RANDOMIZATION: Included patients will be allocated to one of the study arms using block randomization in a 1:1 ratio (each block consists of 10 patients). This randomization method ensures a balanced allocation between the arms during the study. A web-based system will generate random numbers for the allocation sequence and concealment of participants. Each number relates to one of the study arms. BLINDING (MASKING): All study participants, clinicians, nurses, research coordinators, and those analyzing the data are blinded to the group assignment. NUMBERS TO BE RANDOMIZED (SAMPLE SIZE): A total of 60 patients randomized into two groups (30 in each group). TRIAL STATUS: The trial protocol is Version 1.0, August 14, 2020. Recruitment began August 22, 2020, and is anticipated to be completed by November 30, 2020. TRIAL REGISTRATION: The trial protocol has been registered in the Iranian Registry of Clinical Trials (IRCT). The registration number is " IRCT20200506047323N5 ". The registration date was 14 August 2020. FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting the dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Subject(s)
Betacoronavirus/drug effects , Central Nervous System Depressants/therapeutic use , Coronavirus Infections/drug therapy , Melatonin/therapeutic use , Pneumonia, Viral/drug therapy , Adult , Betacoronavirus/genetics , Biomarkers/blood , COVID-19 , Case-Control Studies , Central Nervous System Depressants/administration & dosage , Central Nervous System Depressants/adverse effects , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Double-Blind Method , Hospitalization , Humans , Iran/epidemiology , Melatonin/administration & dosage , Melatonin/adverse effects , Oxygen/blood , Pandemics , Placebos/administration & dosage , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , SARS-CoV-2 , Safety , Time Factors , Treatment Outcome
17.
Front Immunol ; 11: 2075, 2020.
Article in English | MEDLINE | ID: covidwho-776205

ABSTRACT

To explore the metabolic changes and immune profiles in patients with COVID-19, we analyzed the data of patients with mild and severe COVID-19 as well as young children with COVID-19. Of the leukocytes, 47% (IQR, 33-59) were lymphocytes [2.5 × 109/L (IQR, 2.2-3.3)], and monocytes were 0.51 × 109/L (IQR, 0.45-0.57) in young children with COVID-19. In 32 mild COVID-19 patients, circulating monocytes were 0.45 × 109/L (IQR, 0.36-0.64). Twenty-one severe patients had low PO2 [57 mmHg (IQR, 50-73)] and SO2 [90% (IQR, 86-93)] and high lactate dehydrogenase [580 U/L (IQR, 447-696)], cardiac troponin I [0.07 ng/mL (IQR, 0.02-0.30)], and pro-BNP [498 pg/mL (IQR, 241-1,726)]. Serum D-dimer and FDP were 9.89 mg/L (IQR, 3.62-22.85) and 32.7 mg/L (IQR, 12.8-81.9), and a large number of RBC (46/µL (IQR, 4-242) was presented in urine, a cue of disseminated intravascular coagulation (DIC) in severe patients. Three patients had comorbidity with diabetes, and 18 patients without diabetes also presented high blood glucose [7.4 mmol/L (IQR, 5.9-10.1)]. Fifteen of 21 (71%) severe cases had urine glucose +, and nine of 21 (43%) had urine ketone body +. The increased glucose was partially caused by reduced glucose consumption of cells. Severe cases had extraordinarily low serum uric acid [176 µmol/L (IQR, 131-256)]. In the late stage of COVID-19, severe cases had extremely low CD4+ T cells and CD8+ T cells, but unusually high neutrophils [6.5 × 109/L (IQR, 4.8-9.6)], procalcitonin [0.27 ng/mL (IQR, 0.14-1.94)], C-reactive protein [66 mg/L (IQR, 25-114)] and an extremely high level of interleukin-6. Four of 21 (19%) severe cases had co-infection with fungi, and two of 21 (9%) severe cases had bacterial infection. Our findings suggest that, severe cases had acute respiratory distress syndrome (ARDS) I-III, and metabolic disorders of glucose, lipid, uric acid, etc., even multiple organ dysfunction (MODS) and DIC. Increased neutrophils and severe inflammatory responses were involved in ARDS, MODS, and DIC. With the dramatical decrease of T-lymphocytes, severe cases were susceptible to co-infect with bacteria and fungi in the late stage of COVID-19. In young children, extremely high lymphocytes and monocytes might be associated with the low morbidity of COVID-19. The significantly increased monocytes might play an important role in the recovery of patients with mild COVID-19.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/immunology , Coronavirus Infections/metabolism , Pneumonia, Viral/immunology , Pneumonia, Viral/metabolism , Adult , Aged , Blood Glucose/analysis , C-Reactive Protein/analysis , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19 , Child , Child, Preschool , Coronavirus Infections/virology , Female , Humans , Interleukin-6/blood , Lymphocyte Count , Male , Middle Aged , Neutrophils/immunology , Pandemics , Pneumonia, Viral/virology , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Uric Acid/blood
18.
J Biomed Phys Eng ; 10(4): 387-394, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-721715

ABSTRACT

Physicians and scientists around the world are aggressively attempting to develop effective treatment strategies. The treatment goal is to reduce the fatality rate in 15% to 20% of individuals infected with SARS-CoV-2 who develop severe inflammatory conditions that can lead to pneumonia, and acute respiratory distress syndrome. These conditions are major causes of death in these patients. Convalescent plasma (CP) collected from patients recovered from the novel corona virus disease (COVID-19) has been considered as an effective treatment method for COVID-19. Moreover, low-dose radiation therapy (LDRT) for COVID-19 pneumonia was historically used to treat pneumonia during the first half of the 20th century. The concept of LDRT for COVID-19 pneumonia was first introduced in March 2020. Later scientists from Canada, Spain, United States, Germany and France also confirmed the potential efficacy of LDRT for treatment of COVID-19 pneumonia. The rationale behind introducing LDRT as an effective treatment method for pneumonia in COVID-19 patients is not only due to its anti-inflammatory effect, but also in optimization of the activity of the immune system. Moreover, LDRT, unlike other treatment methods such as antiviral drugs, does not have the key disadvantage of exerting a significant selective pressure on the SARS-CoV-2 virus and hence does not lead to evolution of the virus through mutations. Given these considerations, we believe that a hybrid treatment including both CP and LDRT can trigger synergistic responses that will help healthcare providers in mitigating today's COVID-19 pandemic.

SELECTION OF CITATIONS
SEARCH DETAIL